Abstract

Reduced- and low-fat cheeses are desired based on composition but often fall short on overall quality. One of the major problems with fat reduction in cheese is the development of a firm texture that does not break down during mastication, unlike that observed in full-fat cheeses. The objective of this investigation was to determine how the amount of fat affects the structure of Cheddar cheese from initial formation (2 wk) through 24 wk of aging. Cheeses were made with target fat contents of 3 to 33% (wt/wt) and moisture to protein ratios of 1.5:1. This allowed for comparisons based on relative amounts of fat and protein gel phases. Cheese microstructure was determined by confocal scanning laser microscopy combined with quantitative image analysis. Rheological analysis was used to determine changes in mechanical properties. Increasing fat content caused an increase in size of fat globules and a higher percentage of nonspherical globules. However, no changes in fat globules were observed with aging. Cheese rigidity (storage modulus) increased with fat content at 10°C, but differences attributable to fat were not apparent at 25°C. This was attributable to the storage modulus of fat approaching that of the protein gel; therefore, the amount of fat or gel phase did not have an effect on the cheese storage modulus. The rigidity of cheese decreased with storage and, because changes in the fat phase were not detected, it appeared to be attributable to changes in the gel network. It appeared that the diminished textural quality in low-fat Cheddar cheese is attributed to changes in the breakdown pattern during chewing, as altered by fat disrupting the cheese network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.