Abstract
The objective of this paper is to find changes of a rheological profile of the new engine oil if the used engine oil will be add. And also find changes of a rheological profile of the used engine oil if the new engine oil will be add. For these experiments has been created the blends of the new and the used engine oil. The temperature dependence of the density [kg.m−3] has been measured in the range of −10 °C and +60 °C. The instrument Densito 30PX with the scale for measuring engine oils has been used. The dynamic viscosity [mPa.s] has been measured in the range of −10 °C and +100 °C. The Anton Paar digital viscometer with the concentric cylinders geometry has been used. In the accordance with the expected behaviour, the density and the kinematic viscosity of all oils was decreasing with the increasing temperature. To the physical properties has been the mathematical models created. For the temperature dependence of the density has been used the linearly mathematical model and the exponentially mathematical model. For the temperature dependence of the dynamic viscosity has been used the polynomial 6th degree. The knowledge of density and viscosity behaviour of an engine oil as a function of its temperature is of great importance, especially when considering running efficiency and performance of combustion engines. Proposed models can be used for description and prediction of rheological behaviour of engine oils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.