Abstract

Polymeric excipients are often the least well-characterized components of pharmaceutical formulations. The aim of this study was to facilitate the QbD approach to pharmaceutical manufacturing by evaluating the inter-grade and inter-batch variability of pharmaceutical-grade polymeric excipients. Sodium alginate, a widely used polymeric excipient, was selected for evaluation using appropriate rheological methods and test conditions. The materials used were six different grades of sodium alginate and an additional ten batches of one of the grades. To compare the six grades, steady shear measurements were conducted on solutions at 1%, 2%, and 3% w/w, consistent with their use as thickening agents. Small-amplitude oscillation (SAO) measurements were conducted on sodium alginate solutions at higher concentrations (4-12% w/w) corresponding to their use in controlled-release matrices. In order to compare the ten batches of one grade, steady shear and SAO measurements were performed on their solutions at 2% w/w and 8% w/w, respectively. Results show that the potential interchangeability of these different grades used as thickening agents could be established by comparing the apparent viscosities of their solutions as a function of both alginate concentration and shear conditions. For sodium alginate used in controlled-release formulations, both steady shear behavior of solutions at low concentrations and viscoelastic properties at higher concentrations should be considered. Furthermore, among batches of the same grade, significant differences in rheological properties were observed, especially at higher solution concentrations. In conclusion, inter-grade and inter-batch variability of sodium alginate can be determined using steady shear and small-amplitude oscillation methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call