Abstract

In this study, multiwall carbon nanotubes (MWCNTs) and double-wall carbon nanotubes (DWCNTs) have been dispersed in polylactide (PLA) and polyamide 11 (PA11) using an internal mixer. Rheological characterization confirmed the formation of carbon nanotube (CNT) networks in PLA and PA11 attributed to well-dispersed CNTs in the respective matrices. A lower rheological percolation threshold of PLA/MWCNT nanocomposites (less than 0.5 wt. %) compared to PA11/MWCNT nanocomposites (about 2 wt. %) confirmed the greater affinity of CNTs for PLA. The threshold for DWCNTs was below 0.5 wt. % in PLA and between 0.5 and 1 wt. % in PA11. PLA-based nanocomposites also showed higher electrical conductivity values compared to PA11-based nanocomposites. Nanocomposites containing DWCNTs exhibited higher electrical conductivities compared to those containing MWCNTs due to the higher aspect ratio of DWCNTs. Dynamic mechanical thermal analysis showed enhanced storage modulus values and reduced damping behavior with increasing content of CNTs for both polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.