Abstract

AbstractThere are several benefits of using the supercritical fluid microcellular injection moulding process. The part weight, melt temperature, viscosity, moulding pressure, shrink/warpage, and cooling/cycle time are all significantly reduced. The purpose of this study is to investigate the rheological behaviour of PS melt dissolved SCF of nitrogen during Microcellular Injection Moulding process applied with Gas Counter Pressure (GCP) technology. The application of gas into the mould cavity prior to the melt filling provides a counter force against the melt front advancement, restricting the foaming process during the melt filling stage. A slit cavity is designed to measure the pressure drop of polystyrene mixed with 0.4wt% supercritical nitrogen fluid under different mould temperatures (185°C, 195°C, and 205°C), injection speeds (5, 10, and 15 mm/s) as well as counter pressures (0, 150, 300 bars). It was found that melt viscosity is reduced by up to 30% when GCP is increased from 50 to 150 bar as compared to conventional injection moulding. The non-nucleation mixture melt obtained by using a GCP of 300 bar has 32~49% lower viscosity. In addition, the glass transition temperature, Tg, was found to be reduced from 96 °C to 50 °C when the applied GCP is 300 bar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call