Abstract

AbstractMelt of a segmented block copolymer having poly(lauryl lactam) as the hard segment and poly(tetramethylene oxide) as the soft segment was investigated by rheological techniques. Storage modulus of the polymer melt exhibits the nonterminal behavior resembling those of diblock and triblock copolymer melts, indicating the existence of a microphase‐separated structure. Contrary to block copolymers, the melt of the segmented block copolymer changes from a weak structure to a stiff one upon raising temperature. The storage modulus of the weak structure at low temperatures is inert to large‐amplitude oscillatory shear, while the oscillatory shear destroys the stiff structure at high temperatures and reduces its storage modulus to a value that is same as that of the weak structure. The tapping‐mode data of atomic force microscopy reveal that at low temperatures the polymer melt exhibits a biphasic structure consisted of small spherical soft domains dispersed in a slightly harder matrix; and at high temperatures the spherical domain structure preserves, though the domain coarsens and the hardness difference between the domain and the matrix enlarges. Infrared spectrum analysis shows that the temperature‐induced structural change is related to the dissociation of hydrogen bonding between the hard and soft segments. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2557–2567, 2005

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call