Abstract

Bread dough (a flour–water system) has been rheologically characterized using a parallel-plate, an extensional, and a capillary rheometer at room temperature. Based on the linear and nonlinear viscoelastic and viscoplastic data, two constitutive equations have been applied, namely a viscoplastic Herschel–Bulkley model and a viscoelastoplastic K–BKZ model with a yield stress. For cases where time effects are unimportant, the viscoplastic Herschel–Bulkley model can be used. For cases where transient effects are important, it is more appropriate to use the K-BKZ model with the addition of a yield stress. Finally, the wall slip behavior of dough was studied in capillary flow, and an appropriate slip law was formulated. These models characterize the rheological behavior of bread dough and constitute the basic ingredients for flow simulation of dough processing, such as extrusion, calendering, and rolling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.