Abstract

A two-dimensional dense fluid of frictional grains is shown to exhibit time-chaotic, spatially heterogeneous flow in a range of stress values, σ, chosen in the unstable region of s-shaped flow curves. Stress-controlled simulations reveal a phase diagram with reentrant stationary flow for small and large stress σ. In between, no steady flow state can be reached, instead the system either jams or displays time-dependent heterogeneous strain rates γ(r,t). The results of simulations are in agreement with the stability analysis of a simple hydrodynamic model, coupling stress and microstructure which we tentatively associate with the frictional contact network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.