Abstract

AbstractPoly(ethylene terephthalate) (PET)/high‐density polyethylene (HDPE) in situ microfibrillar reinforced blends were prepared via a slit die extrusion‐hot stretch‐quenching process. The in situ PET microfibrils contain various contents of a segmented thermoplastic elastomer, Hytrel 5526 (HT), hence having different flexibility as demonstrated by dynamic mechanical analysis. It is interesting that the simple mixing leads to nanoscale particles of the HT phase in PET phase, and the size of the HT particles is almost independent of the HT concentration, as observed from the scanning electron microscope micrographs which show that the microfibrils with different HT concentrations have almost the same diameter and smooth surfaces. The static rheological results by an advanced capillary rheometer show that the entrance pressure drop and the viscosity of the microfibrillar blends both reduced with increasing the microfibrils' flexibility. Furthermore, the data obtained by the temperature scan of the PET/HT/HDPE microfibrillar blends through a dynamic rheometer indicates that the more flexible microfibril leads to lower melt elasticity and slightly decreases the viscosities of blends, presenting a consistent conclusion about influences of the microfibrils' flexibility on the rheological behavior from the static rheometer measurements. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1205–1216, 2007

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.