Abstract

PurposeThe purpose of this paper is to investigate the rheological characteristics of graphene nanoplatelets (GNPs) and hybridized nanocomposite consisting of multi-walled carbon nanotubes (MWCNTs) and GNPs as an additive on lithium-based grease. The experiments of nanogrease are examined in different values of shear stress, apparent viscosity, temperature and shear rate using Brookfield Programmable Rheometer DV-III ULTRA and characterized by high-resolution transmission electron microscope (HRTEM) and X-ray diffraction (XRD).Design/methodology/approachFirst, GNPs was mixed well with lithium grease using mechanical stirring at 3,500 rpm for 15 min at room temperature to form a homogenous composite at different concentrations (0.5, 1, 1.5, 2 and 2.5 Wt.%). Afterwards, MWCNTs and GNPs are mixed and dispersed well in the lithium grease using a sonication path for 30 min and mechanical stirring at 3,500 rpm for 15 min at 28°C to form a homogenous nanocomposite.FindingsThe results indicated that 1 Wt.% of GNPs is the optimum concentration. Subsequently, the weight percentage of additives varying between MWCNTs and GNPs are tested, and the result indicate that the grease containing GNPs had a 75 per cent increase in shear stress and 93.7 per cent increase in apparent viscosity over ordinary grease.Originality/valueThis work describes the inexpensive and simple fabrication of nanogrease for improving properties of lubricants, which improve power efficiency and extend lifetimes of mechanical equipment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call