Abstract

Novel biorenewable, waterborne, castor oil-based polyurethane dispersions (PUDs) were successfully synthesized via homogeneous solution polymerization in methyl ethyl ketone followed by solvent exchange with water. Small-amplitude oscillatory shear flow experiments were used to systematically investigate the rheological behavior of these environmentally friendly, biorenewable, aqueous dispersions as a function of angular frequency, solid content, and temperature. In addition, the morphology of the dispersions was investigated at 60 °C for different time intervals using transmission electron microscopy (TEM). The solid content and temperature were found to significantly affect the rheological behavior of the PUDs. The composition dependency of the complex viscosity (η*) was found to be well described by the Krieger–Dougherty equation. Thermally induced gelation was observed for PUDs with a solid content ≥27 wt %. Although the viscoelastic behavior of the PUDs was well described by the time–temperature supe...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.