Abstract

ABSTRACTEach year in the world, there is significant amount of dredged slurries generated during geotechnical jobs. In the slurry storage process, the rheological behavior is a key factor affecting the motion of dredged slurries. To gain better understanding on this behavior, experiments on dredged slurries with different liquid limits are conducted using rotary viscometer. It has been found that, as water content increases, slurry property can change from Bingham plastic fluids to Newtonian fluids. In log–log coordinates, their corresponding yield stress and plastic viscosity are in linear relationship with their water contents and the intersection of these two lines can be treated as the turning point which is 4.7 times the liquid limit. The yield stress and plastic viscosity of different dredged slurries can be normalized efficiently using normalized water content. So, in this paper, a new quantitative prediction method for yield stress and plastic viscosity is proposed, which is effective for use in alkined modes of motion, is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.