Abstract

As a matrix for melt-cast explosives, 3,4-dinitropyrazole (DNP) is a promising alternative to 2,4,6-trinitrotoluene (TNT). However, the viscosity of molten DNP is considerably greater compared with that of TNT, thus, requiring the viscosity of DNP-based melt-cast explosive suspensions to be minimized. In this paper, the apparent viscosity of a DNP/HMX (cyclotetramethylenetetranitramine) melt-cast explosive suspension is measured using a Haake Mars III rheometer. Both bimodal and trimodal particle-size distributions are used to minimize the viscosity of this explosive suspension. First, the optimal diameter ratio and mass ratio (two crucial process parameters) between coarse and fine particles are obtained from the bimodal particle-size distribution. Second, based on the optimal diameter ratio and mass ratio, trimodal particle-size distributions are used to further minimize the apparent viscosity of the DNP/HMX melt-cast explosive suspension. Finally, for either the bimodal or trimodal particle-size distribution, if the original data between the apparent viscosity and solid content are normalized, the resultant plot of the relative viscosity versus reduced solid content collapses to a single curve, and the effect of the shear rate on this curve is further investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.