Abstract

The rheological characterizations of concentrated suspensions are generally carried out assuming “well-mixed” suspensions. However, the variation of the concentration distributions of the ingredients of the formulation, i.e., the “goodness of mixing”, the size and shape distributions of the particle clusters and the rheological behavior of the suspension all depend on the thermo-mechanical history that the suspension is exposed to during the mixing process. Here, various experimental tools are used for the characterization of the degree of mixedness (concentration distributions) of various ingredients along with the characterization of rheological material functions, wall slip behavior and the maximum packing fraction of a graphite/elastomer suspension. The degree of mixedness values of the ingredients of the suspensions processed using batch and continuous processes and under differing operating conditions were characterized quantitatively using wide-angle X-ray diffraction and thermo gravimetric analysis and were elucidated under the light of the electrical properties of the suspension as affected by the mixing process. Upon achieving better homogeneity of the graphite particles and the binder and decreases in the size and breadth of the size distributions of particle clusters (as inferred from electrical measurements and maximum packing fraction values), the elasticity (storage modulus) and the shear viscosity (magnitude of the complex viscosity from small-amplitude oscillatory shear and shear viscosity from steady torsional and capillary rheometry) of the suspension decreased significantly and the wall slip velocity values increased. These findings demonstrate the intimate relationships that exist between the rheological behavior of concentrated suspensions and the thermo-mechanical history that they are exposed to during the processing stage and suggest that the preparation conditions for suspensions should be carefully selected and well documented to achieve reproducible characterization of rheological material functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.