Abstract

AbstractThis work studied the rheological, thermal, and mechanical properties of bitumen modified by reclaimed polyethylene (PE), and polypropylene (PP) from different recycling sources. The rutting resistance under high temperature of polymer modified bitumen (PMB) was investigated by rheologically temperature ramp test and multiple stress creep recovery (MSCR) test. It is found that for some modified bitumen, a plateau of complex modulus G* could be formed with temperature increment, revealing rheological stability. Furthermore, these samples with rheological stability revealed a higher creep recovery and lower creep compliance measured by the MSCR test. Glass transition temperature (Tg) measured by dynamic mechanical analysis was used to evaluate the crack resistance under a low temperature of PMB. The influence of recycled PE on the Tg of modified bitumen was different from that of recycled PP modified bitumen, as compared with corresponding virgin polymer modified bitumen. A possible reason for the various effect of recycling sources on the service property of modified bitumen was explored by crystallization and melting behaviors of polymer in bitumen since that polymer with higher crystallinity degree could endow the modified bitumen stiffness, which was closely, related to their service property especially the rutting resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call