Abstract
Effects of concentration on the rheological behavior of acylated pepsin-solubilized collagen solutions were investigated by steady shear tests, dynamic frequency sweep, creep tests and thixotropic loop measurements in this paper. The results showed that both acylated collagen and native collagen solutions exhibited the typical pseudoplastic behavior and displayed shear thinned behavior with the increase of shear rate. With the increase of acylated collagen concentrations from 5 to 10 mg/mL, shear viscosity, elasticity modulus (G′), viscous modulus (G″), complex viscosity (η*), and the ability to resist deformation increased due to the physical entanglement, whilst loss tangent (tan δ) decreased. Additionally, with the increase of acylated collagen concentrations, the area of thixotropic loop increased from 6.94 to 44.40 watts/m3, indicating that the thixotropy of acylated collagen increased. Compared with native collagen solution, acylated collagen solution had stronger shear viscosity, η*, thixotropy, and ability to resist deformation. Furthermore, Power law model, Carreau model, Cross model, Leonov model and Burger model, were suitable for the fitting of the experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.