Abstract

AbstractA series of polyethylene (PE) samples were prepared in a slurry polymerization with bis(cyclopentadienyl) zirconium dichloride (Cp2ZrCl2)/modified methylaluminoxane (MMAO) using a semibatch reactor. The samples had long‐chain branch densities (LCBDs) of a 0.03–1.0 branch per 10,000 carbons and long‐chain branch frequencies (LCBFs) up to a 0.22 branch per polymer molecule. The rheological and dynamic mechanical behaviors of these long‐chain branched PE samples were evaluated. Increasing the LCBF significantly increased the η0's and enhanced shear thinning. Long‐chain branching (LCB) also influenced the loss modulus and storage modulus. Increasing the LCBF led to enhanced G′ and G″ values at low shear rates and broader relaxation spectrums. The samples exhibited thermorheologically complex behavior. LCB also played a significant role in the dynamic mechanical behavior. Increasing the LCBF increased the stiffness of the polymer and enhanced the damping or energy dissipation. However, LCB had little influence on the crystalline structure of the PE. The α‐ and γ‐relaxations showed little dependence on the LCBF. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 307–316, 2004

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.