Abstract

Ferrofluids based on insulating liquids are intensively studied as a potential substitute of liquid dielectric in high voltage technologies. In this work we focus on the experimental investigation of flow and thermal transport characteristics of a ferrofluid based on transformer oil (Mogul) and iron oxide nanoparticles. The magneto-rheological behavior of the ferrofluid was studied by a rotational rheometer in the shear rate range from 1 to 1000 s-1 and magnetic field up to 1 T. By means of a thermal constants analyzer and a transient plane source method we obtained the thermal conductivity, specific heat and thermal diffusivity values for the studied oil and the ferrofluid. It is shown that the Newtonian character of the ferrofluid changes to a non-Newtonian with application of the magnetic field. The notable magneto-viscous effect has been observed especially at low shear rates. We found that the doping of the transformer oil by 3 wt% of the nanoparticles results in a thermal conductivity enhancement by about 3.2%. (Less)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.