Abstract

Abstract The purpose of the present work is to enhance the thermal stability and rheological properties of semi-interpenetrating polymer network (IPN) hydrogel based on partially hydrolyzed polyacrylamide/hydroxypropyl guar (HPAM/HPG) nanocomposite reinforced with graphene oxide (GO), at temperatures (200 and 240 °F) for use in oil recovery applications. FTIR spectra of the IPN nanocomposite hydrogels revealed interactions of GO with HPAM/HPG chains. An increase in the viscosity is also observed from the rheological study. Moreover, IPN and its nanocomposite hydrogels exhibited non-Newtonian behavior. The decline of viscosity of IPN nanocomposite hydrogels was observed with an increase in the temperature from 200 to 240 °F but was still higher than IPN hydrogel without GO. Dispersion of GO through the HPAM/HPG hydrogel matrix was evaluated by SEM morphology and electrical conductivity. The IPN nanocomposite hydrogels showed high viscosity stability, thermal stability, and flow activation energy as compared to IPN hydrogel without GO. Therefore, the addition of 0.1 wt.% of GO to the HPAM/HPG matrix is suitable to create a cross-linked polymer solution with improved properties which may be beneficial for use in oil recovery applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.