Abstract
Carrageenans were widely utilized as thickening and gelling agents in the food and cosmetic industries, and their oligosaccharides have been proven to possess enhanced physicochemical and biological properties. In this study, Shewanella sp. LE8 was utilized for the depolymerization of κ-, ι-, and λ-carrageenan under conditions of fermentation. During a 24-h fermentation at 28 °C, the apparent viscosity of κ-, ι-, and λ-carrageenan decreased by 53.12%, 84.10%, and 59.33%, respectively, accompanied by a decrease in storage modulus, and loss modulus. After a 72-h fermentation, the analysis of methylene blue and molecular weight distribution revealed that ι-carrageenan was extensively depolymerized into smaller polysaccharides by Shewanella sp. LE8, while exhibiting partial degradation on κ- and λ-carrageenan. However, the impact of Shewanella sp. LE8 on total sugars was found to be limited; nevertheless, a significant increase in reduced sugar content was observed. The ESIMS analysis results revealed that the purified components obtained through ι-carrageenan fermentation for 72 h were identified as tetrasaccharides, while the two purified components derived from λ-carrageenan fermentation consisted of a hexasaccharide and a tetrasaccharide, respectively. Overall, the present study first reported the depolymerization of ι-and λ-carrageenan by Shewanella and suggested that the Shewanella could be used to depolymerize multiple carrageenans, as well as complex polysaccharides derived from red algae, to further obtain their oligosaccharides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.