Abstract

This work focuses on the study of rheological and gel properties of hydroxypropyl methylcellulose (HPMC)/hydroxypropyl starch (HPS) blends. It was found that both rheological properties in solution and gel behaviors in hydrogel of the blends depended on polymer/solvent concentration, HPMC/HPS ratio, and temperature. At higher temperature, all the blending samples showed hydrogel behavior, while at lower temperature, the suspensions with higher HPS ratio displayed hydrogel-like behavior but the gels were able to be destroyed at higher frequencies. With an increase of the HPS ratio, the fluid behavior index deceases, meaning the solution shows more obvious pseudoplastic behavior. However, the fluid consistency index increases, meaning that viscosity increases with increase of HPS content. The strength of HPMC gel was weakened by additional of HPS at higher temperature, while the HPS gel was weakened by addition of HPMC at lower temperatures. Viscosities of both HPMC and HPS were balanced by the blending at different temperatures since one is thermal and other is cool gel, which improves the processability for many applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.