Abstract

From the 15th century onwards, painters began to treat their oils with lead compounds before grinding them with pigments. Such a treatment induces the partial hydrolysis of the oil triglycerides and the formation of lead soaps, which significantly modify the rheological properties of the oil paint. Organization at the supramolecular scale is thus expected to explain these macroscopic changes.Synchrotron Rheo-SAXS (Small Angle X-ray Scattering) measurements were carried out on lead-treated oils, with different lead contents. We can now propose a full picture of the relationship between structure and rheological properties of historical saponified oils.At rest, lead soaps in oil are organized as lamellar phases with a characteristic period of 50 Å. Under shear, the loss of viscoelastic properties can be linked to the modification of this organization. Continuous shear resulted in a preferential and reversible orientation of the lamellar domains which increased with the concentration of lead soaps. The parallel orientation predominates over the entire shear range (0–1000 s−1). Conversely, oscillatory shear coiled the lamellae into cylinders that oriented themselves vertically in the rheometer cell. This is the first report of such a vertical cylindrical structure obtained under shear from lamellae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call