Abstract

Organic carbon burial in ancient lacustrine settings is a crucial source of petroleum resources. Unlike the marine environment, the dynamics of organic carbon burial in the terrestrial realm are more complex due to the interplay of global and regional climate-tectonic factors. There appears to be a potential linkage between seawater incursion events (SWIEs) and the generation of lacustrine source rocks. However, reliable proxies to reconstruct the frequency and extent of SWIEs are currently lacking. Here, we explore the potential of rhenium-platinum group elements (Re-PGE) system as a novel proxy for determining SWIEs in the Nenjiang Formation of the lacustrine Songliao Basin in China that is noted for its high-quality source rock. By comparing marine and non-marine intervals, we validate the utility of Re-PGE fractionation patterns and osmium (Os) isotope compositions. Moreover, the Re/Ir ratios demonstrate two main episodes of quantitative seawater-lake water exchange. The comparison of variable indicators shows that the Re-PGE system is more sensitive to the changes in water sources, thus providing detailed information of frequency and exchange amount. The inverse variation between seawater contribution and total organic carbon content further implies that the massive sulfate influx from SWIEs facilitated bacterial sulfate reduction in the sediment pile, which had the effect of recycling nutrients (e.g., phosphorous) back into the water column. The SWIEs-triggered eutrophication induced a positive feedback loop between productivity and hypoxia, creating ideal conditions for the preservation of organic carbon. Our data reveals the detailed mechanism of SWIEs-triggered organic carbon burial and emphasizes the significant role of SWIEs in generating economically important hydrocarbon reservoirs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.