Abstract
Dibromonitrosyl(dihydrogen)rhenium(I) complexes [ReBr(2)(NO)(PR(3))(2)(η(2)-H(2))] (1; R = iPr, a; Cy, b) and Me(2)NH·BH(3) (DMAB) catalyze at either 90 °C or ambient temperature under 10 bar of H(2) the hydrogenation of various terminal and cyclic alkenes (1-hexene, 1-octene, cyclooctene, styrene, 1,5-cyclooctadiene, 1,7-octadiene, α-methylstyrene). Maximum turnover frequency (TOF) values of 3.6 × 10(4) h(-1) at 90 °C and 1.7 × 10(4) h(-1) at 23 °C were achieved in the hydrogenation of 1-hexene. The extraordinary catalytic performance of the 1/DMAB system is attributed to the formation of five-coordinate rhenium(I) hydride complexes [Re(Br)(H)(NO)(PR(3))(2)] (2; R = iPr, a; Cy, b) and the action of the Lewis acid BH(3) originating from DMAB. The related 2/BH(3)·THF catalytic system also exhibits under the same conditions high activity in the hydrogenation of various alkenes with a maximum turnover number (TON) of 1.2 × 10(4) and a maximum TOF of 4.0 × 10(4) h(-1). For the hydrogenations of 1-hexene with 2a and 2b, the effect of the strength of the boron Lewis acid was studied, the acidity being in the following order: BCl(3) > BH(3) > BEt(3) ≈ BF(3) > B(C(6)F(5))(3) > BPh(3) ≫ B(OMe)(3). The order in catalytic activity was found to be B(C(6)F(5))(3) > BEt(3) ≈ BH(3)·THF > BPh(3) ≫ BF(3)·OEt(2) > B(OMe)(3) ≫ BCl(3). The stability of the catalytic systems was checked via TON vs time plots, which revealed the boron Lewis acids to cause an approximate inverse order with the Lewis acid strength: BPh(3) > BEt(3) ≈ BH(3)·THF > B(C(6)F(5))(3). For the 2a/BPh(3) system a maximum TON of 3.1 × 10(4) and for the 2a/B(C(6)F(5))(3) system a maximum TOF of 5.6 × 10(4) h(-1) were obtained in the hydrogenation of 1-hexene. On the basis of kinetic isotope effect determinations, H(2)/D(2) scrambling, halide exchange experiments, Lewis acid variations, and isomerization of terminal alkenes, an Osborn-type catalytic cycle is proposed with olefin before H(2) addition. The active rhenium(I) monohydride species is assumed to be formed via reversible bromide abstraction with the "cocatalytic" Lewis acid. Homogeneity of the hydrogenations was tested with filtration and mercury poisoning experiments. These "rhenium(I) hydride/boron Lewis acid" systems demonstrate catalytic activities comparable to those of Wilkinson- or Schrock-Osborn-type hydrogenations accomplished with precious metal catalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.