Abstract
The interest in the discovery and development of skeletal editing processes that selectively insert, exchange, or delete an atom in organic molecules has significantly increased over the last few years. However, processes of this class that proceed through the creation of a chiral center with high asymmetric induction have been largely unexplored. Herein, we report an enantioselective single-carbon insertion in aryl- and alkyl-substituted alkenes mediated by a catalytically generated chiral Rh-carbynoid and phosphate nucleophiles that produce enantioenriched allylic phosphates (enantiomeric ratio (e.r.) = 89.5:10.5-99.5:0.5). The key to the process was a diastereo- and enantioselective cyclopropanation of the alkene with a chiral Rh-carbynoid and the formation of a transient cyclopropyl-I(III) intermediate. The addition of the phosphate nucleophile provided a cyclopropyl-I(III)-phosphate intermediate that undergoes disrotatory ring opening following the Woodward-Hoffmann-DePuy rules. This process led to a chiral intimate allyl cation-phosphate pair that evolved with excellent enantioretention. The evidence of an SN1-like SNi mechanism is provided by linear free-energy relationship studies, kinetic isotope effects, X-ray crystallography, and control experiments. We demonstrated the utility of the enantioenriched allylic phosphates in late-stage N-H allylations of natural products and drug molecules and in cross-coupling reactions that occurred with excellent enantiospecificity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.