Abstract

We have investigated the effects of the microtubule poison rhazinilam on microtubule assembly in vivo and in vitro. In mammalian cells, rhazinilam mimics the effects of taxol and leads to microtubule bundles, multiple asters, and microtubule cold stability. In vitro, rhazinilam protected preassembled microtubules from cold-induced disassembly, but not from calcium ion-induced disassembly. Moreover, both at 0 degrees C and at 37 degrees C, rhazinilam induced the formation of anomalous tubulin assemblies (spirals). This process was prevented by maytansine and vinblastine, but not by colchicine. Preferential saturable and stoichiometric binding of radioactive rhazinilam to tubulin in spirals was observed with a dissociation constant of 5 microM. This binding was abolished in the presence of vinblastine and maytansine. In contrast, specific binding of radioactive rhazinilam to tubulin assembled in microtubules was undetectable. These results demonstrate that rhazinilam alters microtubule stability differently than taxol, and that the overall similar effects of rhazinilam and taxol on the cellular cytoskeleton are the consequence of two distinct mechanisms of action at the molecular level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.