Abstract

Hexagonal CePO4 nanorods were prepared by a precipitation method and hexagonal CePO4 nanowires were prepared by hydrothermal synthesis at 150 °C. Rh (NO3)3 was then used as a precursor for the impregnation of Rh2O3 onto these CePO4 materials. The Rh2O3 supported on the CePO4 nanowires was much more active for the catalytic decomposition of N2O than the Rh2O3 supported on CePO4 nanorods. The stability of both catalysts as a function of time on stream was studied and the influence of the co-feed (CO2, O2, H2O or O2/H2O) on the N2O decomposition was also investigated. The samples were characterized by N2 adsorption-desorption, inductively coupled plasma optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, X-ray photoelectron microscopy, hydrogen temperature-programmed reduction, oxygen temperature-programmed desorption, and CO2 temperature-programmed desorption in order to correlate the physicochemical and catalytic properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call