Abstract

The C(sp(3) )H bond activation of 8-methylquinoline followed by alkyne insertion catalyzed by a Rh(III) complex has been studied by using density functional theory (DFT) calculations. Contrary to common belief, the CH bond activation of methylquinoline does not occur by the traditional intramolecular concerted metalation/deprotonation (CMD) mechanism but by an external base CMD mechanism. The use of free acetate or copper(II) acetate as base permits the CH activation step, as observed experimentally. However, the following insertion is possible only if copper(II) acetate is used. The insertion followed by metathesis occurs via a cationic Rh(III) complex and is irreversible, which ensures the efficiency of the entire process. Therefore the use of copper is crucial for completing the catalytic cycle. The present work should help to rationalize the origins of the experimental results described in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.