Abstract
Aquatic organisms employ various strategies to excrete ammonia across the gills, skin, and (or) renal routes. During three different stages of their life cycle, we hypothesized that the basal vertebrate sea lamprey (Petromyzon marinus L., 1758) used the skin as a route for ammonia excretion. Measurements of ammonia excretion using divided flux chambers revealed that extrabranchial sites (skin plus renal) of ammonia excretion were quantitatively more important in larval sea lampreys, but following metamorphosis, the gills became the dominant route of excretion in juvenile sea lampreys. Despite the greater relative importance of the skin in the larval stage, Rh glycoprotein isoforms Rhbg, Rhcg1, and Rhcg2 were detected in the skin in all three sea lamprey life stages examined, but the patterns of expression were dependent on the life stage. We conclude that, during the relatively sedentary filter-feeding larval stage, extrabranchial routes play an equally important role as the gill in facilitating ammonia excretion. However, the gills by virtue of their extensive branchial vasculature become the dominant route of ammonia excretion following metamorphosis because of the need to offload greater amounts of ammonia arising from higher rates of basal ammonia production and the potential to excrete higher amounts of ammonia following ingestion of protein-rich blood in the parasitic stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.