Abstract

Corneal alteration potentially leading to ulceration remains a major health concern in ocular surface diseases. A treatment that would improve both the quality and speed of healing and control the inflammation would be of great interest. Regenerating agents (RGTAs) have been shown to stimulate wound healing and modulate undesired fibrosis in various in vivo systems. We investigated the effects of RGTA-OTR4120(®) in a rabbit corneal model in order to assess its potential use in ocular surface diseases. First, we assessed its safety for 7 and 28 days using the Draize test criteria in healthy rabbit eyes; then, we investigated the effect of a single dose (50μl, 5μg) in an alkali-burned cornea model. Daily follow-up of clinical signs of healing was scored, and histology was performed at D7. RGTA was well tolerated; no signs of ocular irritation were observed. In the corneal alkali-burn model, non-RGTA-treated eyes showed inflammatory clinical signs, and histology confirmed a loss of superficial corneal layers with epithelial disorganization, neovascularization and infiltration of inflammatory cells. When compared to NaCl control, RGTA treatment appeared effective in reducing clinical signs of inflammation, enhancing re-epithelialization, and improving histological patterns: edema, fibrosis, neovascularization and inflammation. Three to four layers of epithelial cells were already organized, stroma was virtually unvascularized and keratocytes well implanted in parallel collagen fibers with an overall reorganization similar to normal cornea. RGTA appears to be a promising agent for controlling ocular surface inflammation and promoting corneal healing and was well tolerated. This study offers preclinical information and supports the findings of other (compassionate or pilot) studies conducted in patients with various ocular surface diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.