Abstract
The RGS proteins are a recently discovered family of G protein regulators that have been shown to act as GTPase-activating proteins (GAPs) on the G(alpha i) and G(alpha q) subfamilies of the heterotrimeric G proteins. Here, we demonstrate that RGS7 is a potent GAP in vitro on G(alpha i1), and G(alpha o) heterotrimeric proteins and that RGS7 acts to down-regulate G(alpha q)-mediated calcium mobilization in a whole-cell assay system using a transient expression protocol. This RGS protein and RGS4 are reported to be expressed predominantly in brain, and in situ hybridization studies have revealed similarities in the regional distribution of RGS and G(alpha q) mRNA expression. Our findings provide further evidence to support a functional role for RGS4 and RGS7 in G(alpha q)-mediated signaling in the CNS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.