Abstract

Urotensin II (UII), a vasoactive peptide modulates renal hemodynamics. However, the physiological functions of UII in glomerular cells are unclear. In particular, whether UII alters mesangial tone remains largely unknown. The present study investigates the physiological effects of UII on glomerular mesangial cells (GMCs). This study also tested the hypothesis that the regulator of G-protein signaling (RGS) controls UII receptor (UTR) activity in GMCs. RT-PCR, Western immunoblotting, and immunofluorescence revealed UTR expression in cultured murine GMCs. Mouse UII (mUII) stimulated Ca(2+) release from intracellular stores and activated store-operated Ca(2+) entry (SOCE) in the cells. mUII also caused a reduction in planar GMC surface area. mUII-induced [Ca(2+)]i elevation and contraction were attenuated by SB 657510, a UTR antagonist, araguspongin B, an inositol 1,4,5-trisphosphate receptor antagonist, thapsigargin, a sarco/endoplasmic reticulum Ca(2+)-ATPase inhibitor, and La(3+), a store-operated Ca(2+) channel blocker, but not nimodipine, an L-type Ca(2+) channel blocker. In situ proximity ligation assay indicated molecular proximity between endogenous RGS2 and UTR in the cells. Treatment of GMCs with mUII elevated plasma membrane expression of RGS2 by ∼2-fold. mUII also increased the interaction between RGS2 and UTR in the cells. siRNA-mediated knockdown of RGS2 in murine GMCs increased mUII-induced [Ca(2+)]i elevation and contraction by ∼35 and 31%, respectively. These findings indicate that mUII-induced SOCE results in murine GMC contraction. These data also suggest that UTR activation stimulates RGS2 recruitment to GMC plasma membrane as a negative feedback mechanism to regulate UTR signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.