Abstract

RGO/Sb2S3 nanocomposite has been investigated in this study as a dual anode material for Li- and Na-ion battery applications. The stibnite phase of Sb2S3, and its rGO composite have been obtained from a molecular complex, Sb(SCOPh)3 or its rGO mixture by solid state decomposition or hydrothermal treatment. The pristine sample consists of micron sized particles with rod-like morphology while the rGO composite is made of nanoparticles of Sb2S3 embedded in rGO sheets. Electrochemical lithium and sodium storage properties of the prepared materials have been investigated using galvanostatic cycling, cyclic voltammetry, and electrochemical impedance spectroscopy studies. The rGO composite demonstrates better lithium storage capacity than the pristine sample owing to enhanced conductivity. In addition, the rGO sheets act as a buffer for volume change during lithium/sodium cycling resulting in a better energy storage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call