Abstract

Currently, the primary bottlenecks that hinder the widespread application of supercapacitors are low energy density and narrow potential windows. Herein, the hybrid supercapacitor with high energy density and wide potential window is constructed via an in situ self-assembly method employing RGO-induced flower-like MOF(Ni). Benefiting from the synergistic effect between RGO and MOF(Ni), the interfacial interactions are effectively improved, and the contact area with the electrolyte is enhanced, which increases the ion transfer kinetics and overall electrochemical performance. The MOF(Ni)@RGO electrode exhibits a specific capacitance of 1267.73 F g-1 at a current density of 1 A g-1. Crucially, the assembled MOF(Ni)@RGO//BC with a broad potential window and good stability employing a MOF(Ni)@RGO anode and biomass carbon cathode, combined with a 2 M PVA-KOH gel-electrolyte, achieves a maximum energy density of 70.16 Wh kg-1 at a power density of 2200.09 W kg-1, outperforming most reported supercapacitors. This hybrid supercapacitor exhibits excellent stability and high energy density, providing a novel strategy for further large-scale applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call