Abstract

Aim: A multifunctional nanoplatform has been developed to enhance the targeting capability and biosafety of drug/siRNA for better diagnosis and treatment of myocardial infarction (MI). Materials & methods: The nanoplatform's chemical properties, biodistribution, cardiac magnetic resonance imaging (MRI) capabilities, therapeutic effects and biocompatibility were investigated. Results: The nanoplatform exhibited MI-targeting properties and pH-sensitivity, allowing for effective cardiac MRI and delivery of drugs to the infarcted myocardium. The GCD/Qt@ZIF-RGD demonstrated potential as a reliable MRI probe for MI diagnosis. Moreover, the GCD/si-SHP1/Qt@ZIF-RGD effectively suppressed SHP-1 expression, increased pro-angiogenesis gene expression and reduced cell apoptosis in HUVECs exposed to hypoxia/reoxygenation. Conclusion: Our newly developed multifunctional drug delivery system shows promise as a nanoplatform for both the diagnosis and treatment of MI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call