Abstract

ABSTRACTRGD functionalized nanofibers of poly(ε-caprolactone)/poly(m-anthranilic acid) (PCL/P3ANA) were fabricated to address the mechanical, structural and functional requirements of bone tissue engineering. Nanofibers containing the highest amount of P3ANA with more carboxyl groups for functionalization have exhibited higher surface area and better mechanical properties. FTIR-ATR and UV-visible measurements evidenced the covalent RGD immobilization. After RGD peptide immobilization, the surface properties of nanofibers changed as evidenced by contact angle and electrochemical impedance spectroscopy (EIS). The effects of RGD functionalized nanofibers (PCL/P3ANA-RGD) on Saos-2 cell attachment, proliferation, and osteogenic activity were investigated. PCL/P3ANA-RGD nanofibers favored cell attachment, proliferation, and osteogenic activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.