Abstract
RGB-D image mapping is an important tool in applications such as robotics, 3D reconstruction, autonomous navigation, and augmented reality (AR). Efficient and reliable mapping methods can improve the accuracy, real-time performance, and flexibility of sensors in various fields. However, the currently widely used Truncated Signed Distance Field (TSDF) still suffers from the problem of inefficient memory management, making it difficult to directly use it for large-scale 3D reconstruction. In order to address this problem, this paper proposes a highly efficient and accurate TSDF voxel fusion method, RGBTSDF. First, based on the sparse characteristics of the volume, an improved grid octree is used to manage the whole scene, and a hard coding method is proposed for indexing. Second, during the depth map fusion process, the depth map is interpolated to achieve a more accurate voxel fusion effect. Finally, a mesh extraction method with texture constraints is proposed to overcome the effects of noise and holes and improve the smoothness and refinement of the extracted surface. We comprehensively evaluate RGBTSDF and similar methods through experiments on public datasets and the datasets collected by commercial scanning devices. Experimental results show that RGBTSDF requires less memory and can achieve real-time performance experience using only the CPU. It also improves fusion accuracy and achieves finer grid details.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.