Abstract

Scene labeling research has mostly focused on outdoor scenes, leaving the harder case of indoor scenes poorly understood. Microsoft Kinect dramatically changed the landscape, showing great potentials for RGB-D perception (color+depth). Our main objective is to empirically understand the promises and challenges of scene labeling with RGB-D. We use the NYU Depth Dataset as collected and analyzed by Silberman and Fergus [30]. For RGB-D features, we adapt the framework of kernel descriptors that converts local similarities (kernels) to patch descriptors. For contextual modeling, we combine two lines of approaches, one using a superpixel MRF, and the other using a segmentation tree. We find that (1) kernel descriptors are very effective in capturing appearance (RGB) and shape (D) similarities; (2) both superpixel MRF and segmentation tree are useful in modeling context; and (3) the key to labeling accuracy is the ability to efficiently train and test with large-scale data. We improve labeling accuracy on the NYU Dataset from 56.6% to 76.1%. We also apply our approach to image-only scene labeling and improve the accuracy on the Stanford Background Dataset from 79.4% to 82.9%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.