Abstract
We present a 3D edge detection approach for RGB-D point clouds and its application in point cloud registration. Our approach detects several types of edges, and makes use of both 3D shape information and photometric texture information. Edges are categorized as occluding edges, occluded edges, boundary edges, high-curvature edges, and RGB edges. We exploit the organized structure of the RGB-D image to efficiently detect edges, enabling near real-time performance. We present two applications of these edge features: edge-based pair-wise registration and a pose-graph SLAM approach based on this registration, which we compare to state-of-the-art methods. Experimental results demonstrate the performance of edge detection and edge-based registration both quantitatively and qualitatively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.