Abstract

Regulation by signaling molecules of pathways involved in determining cell size and shape is fundamental to understand morphogenesis. In eukaryotic cells, Rho GTPases modulate cellular events by acting as molecular switches. GTPase Activating Proteins (GAPs) control the fine-tuning of Rho GTPase activity as downregulators that promote their inactive state. We use Schizosaccharomyces pombe as a model to unveil key mechanisms underlying processes of general significance. Rga4, one of the nine RhoGAPs present in the fission yeast, is a key factor in the control of cell polarity and morphogenesis by negatively regulating the activity of the essential Rho GTPase Cdc42. We have demonstrated that Rga4 is also a GAP for Rho2 GTPase, which acts upstream of the Pmk1 cell integrity MAP kinase pathway and positively regulates cell integrity and cell separation. Our findings suggest that Rga4 control of both Cdc42 and Rho2 function is rather independent, thus providing a good example of regulatory specificity. Additionally, we describe multiple GAPs that can downregulate Pmk1 activity in a Rho2-dependent and independent fashion. These studies corroborate the existence of a sophisticated regulatory network by which different RhoGAPs modulate differentially the activity of Rho GTPases, and the existence of different inputs for the Pmk1 cell integrity MAP kinase pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.