Abstract

Nonlinear free vibration of functionally graded shallow shells with complex planform is investigated using the R-functions method and variational Ritz method. The proposed method is developed in the framework of the first-order shear deformation shallow shell theory. Effect of transverse shear strains and rotary inertia is taken into account. The properties of functionally graded materials are assumed to be varying continuously through the thickness according to a power law distribution. The Rayleigh–Ritz procedure is applied to obtain the frequency equation. Admissible functions are constructed by the R-functions theory. To implement the proposed approach, the corresponding software has been developed. Comprehensive numerical results for three types of shallow shells with positive, zero and negative curvature with complex planform are presented in tabular and graphical forms. The convergence of the natural frequencies with increasing number of admissible functions has been checked out. Effect of volume fraction exponent, geometry of a shape and boundary conditions on the natural and nonlinear frequencies is brought out. For simply supported rectangular FG shallow shells, the results obtained are compared with those available in the literature. Comparison demonstrates a good accuracy of the approach proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call