Abstract
More and more studies found that many complex human diseases occur accompanied by aberrant expression of microRNAs (miRNAs). Small molecule (SM) drugs have been utilized to treat complex human diseases by affecting the expression of miRNAs. Several computational methods were proposed to infer underlying associations between SMs and miRNAs. In our study, we proposed a new calculation model of random forest based small molecule-miRNA association prediction (RFSMMA) which was based on the known SM-miRNA associations in the SM2miR database. RFSMMA utilized the similarity of SMs and miRNAs as features to represent SM-miRNA pairs and further implemented the machine learning algorithm of random forest to train training samples and obtain a prediction model. In RFSMMA, integrating multiple kinds of similarity can avoid the bias of single similarity and choosing more reliable features from original features can represent SM-miRNA pairs more accurately. We carried out cross validations to assess predictive accuracy of RFSMMA. As a result, RFSMMA acquired AUCs of 0.9854, 0.9839, 0.7052, and 0.9917 ± 0.0008 under global leave-one-out cross validation (LOOCV), miRNA-fixed local LOOCV, SM-fixed local LOOCV, and 5-fold cross validation, respectively, under data set 1. Based on data set 2, RFSMMA obtained AUCs of 0.8456, 0.8463, 0.6653, and 0.8389 ± 0.0033 under four cross validations according to the order mentioned above. In addition, we implemented a case study on three common SMs, namely, 5-fluorouracil, 17β-estradiol, and 5-aza-2'-deoxycytidine. Among the top 50 associated miRNAs of these three SMs predicted by RFSMMA, 31, 32, and 28 miRNAs were verified, respectively. Therefore, RFSMMA is shown to be an effective and reliable tool for identifying underlying SM-miRNA associations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.