Abstract
Rate adaptation in vehicular networks is known to be more challenging than in WLANs due to the high mobility of stations. Nevertheless, vehicular networks are subject to certain recurring patterns particularly if stations communicate to roadside units. This has lead to the proposal of learning-based rate adaptation schemes which are trained for a certain propagation environment. In general, these schemes outperform other approaches at the price of being specific for a particular environment. In this paper we present RFRA, a novel rate adaptation scheme for vehicular networks. It is based on the machine-learning algorithm Random Forests which is known to be superior to most other learning approaches. Firstly, we show that RFRA outperforms other learning-based methods significantly. We also study the question how sensitive RFRA is to changes of the learned environment, especially with respect to the propagation characteristics. We show that, although this reduces the gain of our scheme, RFRA still provides a much higher performance than state-of-the-art rate adaptation schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.