Abstract

OBJECTIVE: The objective of the paper is to design a testing protocol to measure performances of RFID devices applied to blood supply chain, and to implement an experimental campaign in order to collect performance data. The protocol matches operational conditions in blood supply chain and is particularly tailored to some critical processes, which can benefit from RFID adoption. The paper thus strives at benchmarking performances of inlays, fixed and handheld RFID readers, when deployed in the blood supply chain processes. DESIGN, METHODOLOGY, APPROACH: The adopted testing protocol enables the assessment of performances of RFID devices in processes of the blood supply chain, since it has been developed peculiarly to emulate critical logistics processes. The testing protocol has been designed jointly with hospital personnel involved in every day operations on blood bags and tubes in order to improve processes, in terms of safety and reliability. The testing protocol has been applied to 3 inlays, 2 fixed readers, 1 mobile handheld in 3 logistics processes, all operating according to UHF EPC class 1 gen 2 protocols and ETSI regulations. We measured and compared read rates, accuracies and read times. FINDINGS: The results of the test give a direct insight of performances to be expected from different RFID devices when deployed in a real-world environment. Therefore, it is possible to give answers to how a specific piece of hardware —such as an inlay or a reader —performs, and how it can be effectively used to improve security of patients in healthcare. At the same time, researchers focusing on the business process reengineering of blood supply chain can assess the technical feasibility of the RFID-reengineered logistics processes in order to improve the safety of end users.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call