Abstract

RFID solutions will improve the traceability of biological samples stored at low temperature (77K) in biobanks. To achieve this goal, the reliability of RFID tags is essential. In this paper, we focus on the reliability aspect of RFID tags in harsh environment and more specifically to assembly design optimization through numerical simulations and accelerated life tests. A package-dimensioned model and a wire-interconnect centered model have been used to assess stress distribution in the package and wire bonds. We also develop a specific versatile test bench to apply thermal cycling while monitoring the functionality of the tags. We investigate three different tag configurations and demonstrate that the main failure mode is related to wire breaks. The occurrence of this failure depends mainly on the nature and thickness of the encapsulant resin which induce compressive and tensile stresses during thermal cycling. FEM results are in good agreement with observed failures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.