Abstract
Unsupervised signal modulation clustering is becoming increasingly important due to its application in the dynamic spectrum access process of 5G wireless communication and threat detection at the physical layer of Internet of Things. The need for better clustering results makes it a challenge to avoid feature drift and improve feature separability. This article proposes a novel separable loss function to address the issue. Besides, the high-level semantic properties of modulation types make it difficult for networks to extract their features. An autoencoder structure based on the random Fourier feature (RffAe) is proposed to simulate the demodulation process of unknown signals. Combined with the separable loss of RffAe (RffAe-S), it has excellent feature extraction ability. Great experiments were carried out on RADIOML 2016.10 A and RADIOML 2016.10 B. Experimental evaluations on these datasets show that our approach RffAe-S achieves state-of-the-art results compared to classical and the most relevant deep clustering methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.