Abstract
In conventional morphometrics, researchers often collect and analyze data using large numbers of morphometric features to study the shape variation among biological organisms. Feature selection is a fundamental tool in machine learning which is used to remove irrelevant and redundant features. Recursive feature elimination (RFE) is a popular feature selection technique that reduces data dimensionality and helps in selecting the subset of attributes based on predictor importance ranking. In this study, we perform RFE on the craniodental measurements of the Rattus rattus data to select the best feature subset for both males and females. We also performed a comparative study based on three machine learning algorithms such as Naïve Bayes, Random Forest, and Artificial Neural Network by using all features and the RFE-selected features to classify the R. rattus sample based on the age groups. Artificial Neural Network has shown to provide the best accuracy among these three predictive classification models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.