Abstract
In the present work, dredged polluted sediments with high level of hydrocarbons and heavy metals have been treated by means of a laboratory scale radiofrequency (RF) thermal plasma source inside a graphite crucible. Two different experimental approaches have been utilized (1) to fully decontaminate and vitrify this material, and (2) to study the technical feasibility of metallurgical-grade silicon (MGS) smelting by carbothermal-reduction reactions of carbon with silica (SiO2) content in these dredged sediments. A two-dimensional model of a commercial inductively coupled RF plasma torch has been used to investigate the effects of plasma flow and temperature distributions of the plasma discharge interacting with the material inside the crucible. Samples of both vitrification and carbothermal reduction processes were characterized by scanning electron microscopy analysis (SEM), energy dispersion spectroscopy (EDS), X-ray fluorescence (XRF) and leaching tests. Results obtained showed a fully decontamination of the dredged sediments, with release values of heavy metals in leachates well below the law limits. Moreover, SEM/EDS analyses suggested that separation of MGS by carbothermal-reduction process is possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.