Abstract

A low-complexity optical phase noise mitigation scheme, based on a radio frequency pilot (RFP) and partition phase correction (PPC), is proposed. For diverse channel configurations, an optimized RFP with fixed parameters is first employed in coarse phase tracking for generality purposes. Based on the reliable predecision results, we propose a noniterative PPC algorithm to further suppress the residual noise. Numerical simulations demonstrate that compared with other phase noise compensation algorithms, the proposed scheme has better robustness and lower computational complexity. In addition, the performance degradation caused by decision errors is also discussed, and a moderate partition length with small floating range can guarantee satisfactory correction quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call