Abstract

This paper presents radio frequency microelectromechanical systems (RF-MEMS) capacitive switches fabricated using printed circuit processing techniques. The key feature of this approach is the use of most commonly used flexible circuit film, Kapton E polyimide film, as the movable switch membrane. The physical dimensions of these switches are in the mesoscale range. For example, electrode area of a typical capacitive shunt switch on coplanar waveguide (CPW) is 2 mmtimes1 mm, respectively. A CPW shunt switch with insertion loss 10 dB in the frequency range of 8 to 30 GHz is reported. K-band, Ku-band, and X-band high-isolation CPW shunt switches designed by inductive compensation of the switch down-position capacitance are also presented. Inductance compensation has been implemented by introducing inductive step-in-width junctions in the MEMS switch electrode. The K-band switch provides a maximum isolation value of 54 dB at 18 GHz. For the K-band switch, the insertion loss is less than 0.3-0.4 dB in the frequency range of 1-30 GHz and the isolation values are better than 20 dB in the frequency range of 12 to 30 GHz. The Ku-band switch provides a maximum isolation of 46 dB at 16.5 GHz. For the Ku-band switch, the insertion loss is less than 0.4-0.45 dB in the frequency range of 1-30 GHz and the isolation is greater than 20 dB in the frequency range of 12 to 22 GHz. The X-band switch provides a maximum isolation value of 32 dB at 10.6 GHz. The insertion loss is less than 0.25-0.3 dB in the frequency range of 1-18 GHz and the isolation is better than 20 dB in the frequency range of 8.5 to 13.5 GHz for the X-band switch. The measured typical pull-down voltage is in the range of 100-120 for this type of switches. These switches are uniquely suitable for monolithic integration with printed circuits and antennas on organic laminate substrates

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.